

ТЕХНИЧЕСКИЙ ПАСПОРТ

Затвор дисковый поворотный DN.RU с рукояткой DN40-300 PN1,6МПа (16кгс/см2)

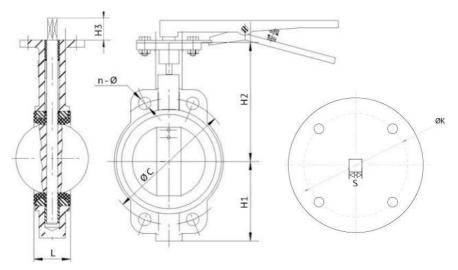
ОБЩИЕ СВЕДЕНИЯ ОБ ИЗДЕЛИИ

Наименование изделия: Затвор дисковый поворотный DN.RU с рукояткой DN40-300 PN1,6МПа (16кгс/см2)

Декларация о соответствии: EAЭС N RU Д-CN.MH06.B.07931/20 срок действия до 07.12.2023

Назначение: Затвор дисковый поворотный предназначен для использования в качестве запорной или регулирующей арматуры для управления потоками в системах теплоснабжения, водоснабжения, в технологических процессах пищевой, химической, нефтегазовой, целлюлозно-бумажной и других отраслях промышленности.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ И ХАРАКТЕРИСТИКИ


Номинальный диаметр DN, мм	40 - 300
Номинальное давление PN, Мпа (кг/см2)	1,6 (16)
Направление потока	двустороннее
Температура рабочей среды t, °С	От -20 до +85 для NBR
	От -20 до +120 для EPDM
	От -10 до +180 для PTFE
Герметичность в затворе	по классу А ГОСТ 9544-2015
Рабочая среда	EPDM: холодная и горячая вода, воздух без
	примесей масла и жира, иные среды нейтральные
	к материалу
	PTFE: вода, щелочи, кислоты, растворители и
	окислители
	NBR: вода, минеральные масла, углеводороды,
	масла, жиры
Присоединение к трубопроводу	межфланцевое
Тип управления	рукоятка

СВЕДЕНИЯ О МАТЕРИАЛАХ ОСНОВНЫХ ДЕТАЛЕЙ

Nº	Наименование	Материал	Nº	Наименование	Материал
1	Корпус	Нержавеющая сталь AISI316L (03X17H14M3) или углеродистая сталь WCB	6	Втулка	PTFE
2	Манжета	EPDM, PTFE, NBR	7	Уплотнительное кольцо	Нитрил NBR
3, 4, 5	Диск, Шток, Шпилька	Сталь AISI316L (03X17H14M3)	8, 9	Пластина, Рукоятка	Углеродистая сталь

ОСНОВНЫЕ РАЗМЕРЫ ЗАТВОРОВ

DN	H1	H2	Н3	L	S	K	С	n - Ø	Шток	IS0	Bec
	MM										КГ
40	56	110	27	33	9	50	110	4 - Ø18	9x9	F05	2
50	76	162	32	45	9	50	125	4 - Ø18	9x9	F05	2
65	89	175	32	48	9	50	145	4 - Ø18	9x9	F05	2.3
80	95	181	32	49	9	50	160	8 - Ø18	9x9	F05	2.6
100	114	200	32	55	11	50	180	4 - Ø18	11x11	F07	4.1
125	127	213	32	58	14	70	210	4 - Ø18	14x14	F07	5.2
150	140	225	32	59	14	70	240	4 - Ø23	14x14	F07	6.6
200	177	260	36	64	17	102	295	4 - Ø23	17x17	F10	11.5
250	203	292	36	70	22	102	355	4 - Ø27	22x22	F10	17.3
300	242	337	36	80	22	125	410	4 - Ø27	22x22	F10	27.8

МАКСИМАЛЬНЫЕ КРУТЯЩИЕ МОМЕНТЫ

DN, mm	Кру	гящий момент при ∆Р=16	бар, Нм
DIN, MM	EPDM	NBR	PTFE
40	20	20	42
50	23	23	45
65	29	29	50
80	39	39	55
100	59	59	128
125	84	84	150
150	86	86	272
200	220	220	400
250	350	350	400
300	420	420	600

МОНТАЖ И ЭКСПЛУАТАЦИЯ

- 1. Перед монтажом необходимо очистить (продуть) трубопроводы от грязи, песка, окалины.
- 2. Установку поворотных затворов следует производить только между воротниковыми фланцами (тип 11 ряд 1 исп. В по ГОСТ 33259).
- 3. Внутренний диаметр фланцев должен соответствовать номинальному диаметру дискового поворотного затвора.
- 4. Фланцы должны располагаться плоскопараллельно по отношению друг к другу на расстоянии, обеспечивающем свободное (без лишних усилий) размещение между ними затвора. На уплотнительных поверхностях фланцев не должно быть забоин, раковин, заусенцев, а также других дефектов поверхностей.
- 5. Перед началом монтажа диск поворотного затвора необходимо немного приоткрыть, но так, чтобы диск не выходил за корпус дискового поворотного затвора.
- 6. Отцентрируйте поворотный затвор и слегка закрутите болты (шпильки), но не затягивайте их. Откройте диск поворотного затвора до положения «полностью открыто».

- 7. Затяните болты (шпильки) так, чтобы фланцы и корпус (металлическая часть) затвора соприкасались. Фланцевые соединения следует затягивать равномерно в три или даже четыре прохода, последовательностью «крест-накрест».
- 8. Затяжка болтов на межфланцевых соединениях должна быть равномерной по всему периметру. Медленно закройте и откройте дисковый поворотный затвор.

Если установка затвора была проведена правильно, затвор должен свободно открываться и закрываться.

ГАРАНТИЙНЫЙ СРОК

Производитель гарантирует работоспособность изделия в течение 12 месяцев с момента ввода в эксплуатацию, но не более 18 месяцев с момента продажи. Гарантия не распространяется:

- на части и материалы изделия подверженные износу;
- на случаи повреждения, возникшие вследствие:
 - внесения изменения в оригинальную конструкцию изделия;
 - нарушения общих монтажных рекомендаций;
 - неисправностей, возникших при неправильном обслуживании и складировании;
 - неправильной эксплуатации и применения оборудования.

ОТМЕТКА О ПРОДАЖЕ

№ п/п	Наименование	Кол-во

Дата продажи:	
	МΠ

ТЕХНИЧЕСКИЙ ПАСПОРТ

Электропривод четвертьоборотный DN.RU серии QT напряжением 220B, 380B и 24B

ОБЩИЕ СВЕДЕНИЯ ОБ ИЗДЕЛИИ

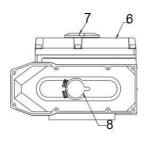

Наименование изделия: Электропривод четвертьоборотный DN.RU серии QT напряжением 220B, 380B и 24B

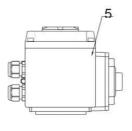
Декларация о соответствии: EAЭС N RU Д-CN.PA01.B.98275/21 срок действия до 12.07.2024

Назначение: Электроприводы четвертьоборотные предназначены для дистанционного и местного управления вращением запорного органа на 0° ~ 270° таких типов как кран шаровой и т.п. Они широко применяются в различных отраслях народного хозяйства: в газовой, нефтяной, металлургической, пищевой промышленности, в жилищно-коммунальном хозяйстве и т.д.

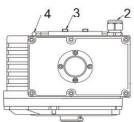
Электроприводы устанавливаются непосредственно на трубопроводной арматуре. Установочные размеры соответствуют международному стандарту ISO 05211 / DIN3337. Четыре микровыключателя используются для ограничения хода выходного вала по конечным положениям рабочего органа арматуры. Электроприводы рассчитаны для работы в номинально-кратковременном режиме S2.

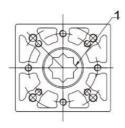
ТАБЛИЦА ОБОЗНАЧЕНИЯ ИЗДЕЛИЯ



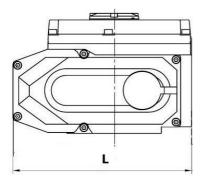


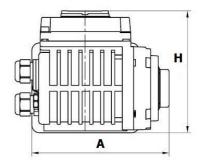
ОСНОВНЫЕ ПАРАМЕТРЫ


Питание	Стандартно: 220 В, 50 Гц, 1 фаза По требованию: 380 В, 50/60 Гц, 3 фазы; 24В постоянный ток
Концевые выключатели	2-Открыто/Закрыто 250В 10А
Дополнительные концевые выключатели	2-Открыто/Закрыто 250В 10А
Угол поворота выходного вала	Стандартно: 90°, по требованию 90°-270° ±10°
Защита от перегрева/ Рабочая температура электродвигателя	Встроенная тепловая защита, открытие при 120°C ±5°C / закрытие при 97°C ± 5°C
Рабочий диапазон температур, °С	-20+40
Температура окружающей среды, °С	-20+70
Ручной дублер	шестигранник (в комплекте)
Самоблокирующееся устройство	Самоблокирующееся червяком и червячной передачей
Механический ограничитель	2 внешних регулируемых стопора
Кабельные вводы	2 шт, М18


КОНСТРУКЦИЯ ЭЛЕКТРОПРИВОДА

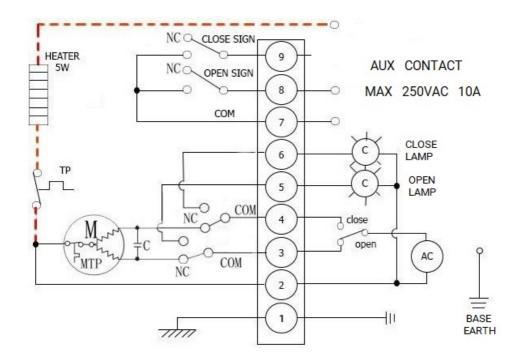
ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ QT003-QT030


	QT-003	QT-005	QT-008	QT-010	QT-015	QT-020	QT-030		
Крутящий момент, Нм	30	50	80	100	150	200	300		
Время цикла, сек. (поворот 90°)	20	30	30	30	30	30	30		
Максимальный диаметр штока арматуры, мм	11x11	14x14	17x17	17x17	17x17	27x27	27x27		
Степень защиты корпуса	IP67 (по требованию - IP68)								
Материал	СТ	аль, алюк		сплав, ал ликарбон		вая бронза	1,		
Высота соединительного выступа, мм	74	89	89	107	104	152	152		
Тип ISO фланца	F03/ F05	F05/ F07	F05/ F07	F05/ F07	F05/ F07	F10/ F12	F10/ F12		
Вес, кг	2,1	3,6	3,6	4,6	4,6	13	13,4		

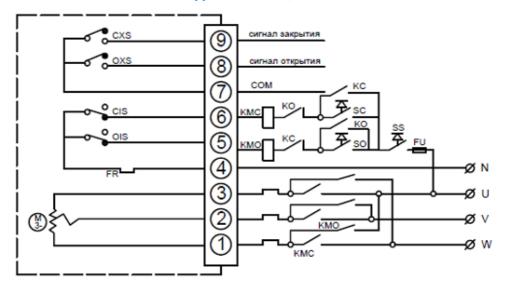

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ QT040-QT300

	QT-040	QT-060	QT-080	QT-100	QT-160	QT-200	QT-300
Крутящий момент, Нм	400	600	800	1 000	1 600	2 000	3 000
Время цикла, сек. (поворот 90°)	30	30	40	40	60	60	120
Максимальный размер квадрата арматуры, мм	27x27	27x27	27x27	27x27	32x32	36x36	36x36
Степень защиты корпуса			IP67 (по	требованин	o - IP68)		
Материал	СТ	аль, алюмин	иевый спла	в, алюминие	вая бронза,	поликарбон	іат
Высота соединительного выступа, мм	152	152	152	152	151	151	151
Тип ISO фланца	F10/ F12	F10/ F12	F10/ F12	F10/ F12	F14/ F16	F14/ F16	F14/ F16
Вес, кг	13,8	14	14,3	14,5	68	68	68

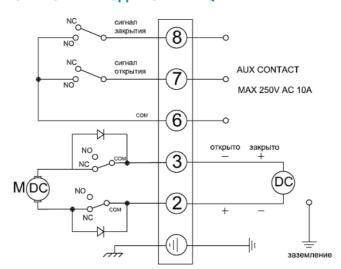
ГАБАРИТНЫЕ РАЗМЕРЫ ЭЛЕКТРОПРИВОДА



Модель привода	L, мм	Н, мм	А, мм
QT-003	123	113	123
QT-005	160	146	121
QT-008	160	146	121
QT-010	189	163	129
QT-015	189	163	129
QT-020	268	212	164
QT-030	268	212	164
QT-040	268	212	164
QT-060	268	212	164
QT-080	268	212	164
QT-100	268	212	164
QT-160	268	212	367.5
QT-200	268	212	367.5
QT-300	268	212	367.5



ЭЛЕКТРИЧЕСКАЯ СХЕМА ПОДКЛЮЧЕНИЯ QT-XXX-220



ЭЛЕКТРИЧЕСКАЯ СХЕМА ПОДКЛЮЧЕНИЯ QT-XXX-380

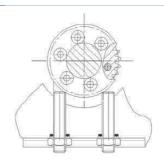
ЭЛЕКТРИЧЕСКАЯ СХЕМА ПОДКЛЮЧЕНИЯ QT-XXX-24

ТЕХНИЧЕСКИЕ ДАННЫЕ ЭЛЕКТРОПРИВОДА QT003-QT020

Модель привода	QT-003		QT-005		QT-008		QT-010		QT-015		QT-020	
Напряжение питания	220B	24B	380B или 220B	24B								
Номинальный ток, А	0,15	0,5	0, 25	0,5	0,25	0,5	0,35	0,8	0,33	0,8	0,30	2
Номинальная мощность, Вт	q		10	10	10	10	15	15	15	15	45	45

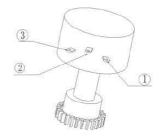
ТЕХНИЧЕСКИЕ ДАННЫЕ ЭЛЕКТРОПРИВОДА QT030-QT300

Модель привода	QT-0)30	QT-040		QT-060		QT- 080	QT- 100	QT- 160	QT- 200	QT-300
Напряжение питания	380B или 220B	24B	380B или 220B	24B	380B или 220B	24B	380B или 220B	380B	380B	380B	380B
Номинальный ток, А	0,31	2	0,33	3	0,33	3	0,47	0,47	0,85	0,85	0,85
Номинальная мощность, Вт	45	45	60	60	90	60	180	180	180	180	180


МОНТАЖ И ЭКСПЛУАТАЦИЯ

- 1. Данный электропривод не оборудован моментными выключателями, поэтому при использовании электропривода в качестве исполнительного управляющего элемента на арматуре транспортирующей загрязненную и/или абразивную среду с твердыми включениями, во избежание выхода электропривода и/или арматуры из строя, требуется исключить вероятность заклинивания запорного органа арматуры из-за попадания твердых частиц/тел между запорным органом и корпусом и/или уплотнением арматуры либо предусмотреть электрическую защиту и отключение по току потребления электропривода.
- 2. Предусмотрите пространство для ремонта кабелей, ручной работы.
- 3. Во избежание повреждений арматуры проверьте или настройте концевые выключатели.
- 4. При установке привода на задвижку в любом положении, отличном от вертикального, привод должен иметь собственные опоры.
- 5. Перед запуском привода произведите несколько циклов пробного открытия закрытия задвижки с помощью ручного дублера привода. Если при открытии от ручного дублера запорная арматура открывается-закрывается нормально, то следует подключить ее к сетям питания и управления и произвести несколько циклов пробного открытия-закрытия с помощью электропривода.

Регулировка механического переключателя:


Ослабьте контргайку и вручную переведите электропривод полностью В закрытое положение, поверните гайки механических стопоров до касания веерообразной шестерни, а затем заверните на два оборота и затяните контргайку. Таким образом устанавливается положение механических упоров ДЛЯ полностью закрытого положения Так же устанавливается электропривода. положение полного открытия.

Регулировка потенциометра:

Потенциометр, как выводящий сигнал обратной связи, с 3 клеммами, подключите: к подвижному рычагу потенциометра (2); к клемме, сопротивление которой понижается между подвижными рычагами при движении привода в открытое положение (1); к клемме, сопротивление которой понижается между подвижными рычагами при движении привода в сторону закрытого положения (3).

Поверните вручную клапан в положение полного открытия до перемещения концевого выключателя, измеряя сопротивление помощью мультиметра, остановите сопротивление между (2) и (1) $35\Omega \sim 60\Omega$. Если значение неверно, отрегулируйте шестерню поворачивая приводную потенциометра.

ГАРАНТИЙНЫЙ СРОК

Производитель гарантирует работоспособность изделия в течение 12 месяцев с момента ввода в эксплуатацию, но не более 18 месяцев с момента продажи.

Гарантия не распространяется на дефекты, возникшие в случаях:

- нарушения паспортных режимов хранения, монтажа, испытания, эксплуатации и обслуживания изделия;
- ненадлежащей транспортировки и погрузо-разгрузочных работ;
- наличия следов воздействия веществ, агрессивных к материалам изделия;
- наличия повреждений, вызванных пожаром, стихией, форс мажорными обстоятельствами:
- повреждений, вызванных неправильными действиями потребителя;
- наличия следов постороннего вмешательства в конструкцию изделия.

ОТМЕТКА О ПРОДАЖЕ

№ п/п	Наименование	Кол-во

Дата продажи:	
	М.П.

